AD-A282 845
L

Hidden Markov Model for
Gesture Recognition

Jie Yang, Yangsheng Xu

CMU-RI-TR-9%4-10

DTIC |

ERELECTE
3 AUG 01 1994

F

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

May 1994

(©1994 Carnegie Mellon University

— -
¢ documant

'y fat
| die

J—— -._'_’_—_—_,_—-‘—_—.,
has been oppxoved
publie 1aleqse 'q.qd ;.cle; its %
wibutice 19 te

94-24154
(T

DTI® QUALITY INSPECTED 8

94 7

o9 088

\

Contents

1 Introduction 1
2 Hidden Markov Model 2
3 HMM-based Gesture Recognition 3
3.1 Approach e e e 4
3.2 Feature Extraction and Vector Quantization 5
33 Recognition e 9
3.4 Isolated vs. Continuous Gesture Recognition 11
4 Computational Consideration 11
A1 ScaliDg . . v o v et e e 11
4.2 Logarithmic computation. 13
43 Thresholdingt 14
4.4 Multiple Independent Sequences 14 1
45 Imitialization e e 14
5 Experimental Results 15
51 GestureInput e e 16
52 Preprocessing ittt e e e e e e e e e e 16
53 Training o o o i e e e e e e e e e e 17
54 Resulis. e e e e e e e e 19
Accesion For \
6 Conclusion NTIS CRARI a"-"i 21
DTIC TAEB 3
Uniannourice.. S |
Justificatior: o J
By f‘vﬂz .
Distrlutic' ! '
o
Dist AVd;Jif 'Cn‘:'
, A-1
i - -

]

List of Figures

1 HMM networks for gesture recognition without adding knowledge source. . . 10
2 Block diagram of the gesture based system.. 15
3 Thedefinedgestures. 16
4 Anexampleof gesturesignals. 17
5 An example of preprocessing for one-dimensional signal. 18
6 Recognition rate vs. trainingsetsize. 19
7 An example of continuous gesture: (a) connected and (b) separated. 20

iii

Abstract

This report presents a method for developing a gesture-based system using a multi-dimensional
hidden Markov model (HMM). Instead of using geometric features, gestures are converted
into sequential symbols. HMMs are employed to represent the gestures and their parame-
ters are learned from the training data. Based on “the most likely performance” criterion,
the gestures can be recognized through evaluating the trained HMMs. We have developed
a prototype system to demonstrate the feasibility of the proposed method. The system
achieved 99.78% accuracy for an isolated recognition task with nine gestures. Encouraging
results were also obtained from experiments of continuous gesture recognition. The proposed
method is applicable to any gesture represented by a multi-dimensional signal, and will be
a valuable tool in telerobotics and human computer interfaces.

iv

1 Introduction

A gesture interface is an interface where users specify commands by simple gestures such as
drawings and actions. For example, with a gesture interface, a robot may be programmed
by showing of teleoperators, and a teleoperated robot may not only know to follow human
commands but also the meaning of the commands [1]. To develop such an interface, the key
issues are how to sense gesture information and how to recognize the gestures from sensed
data. To develop a gesture interface, we need some criteria to evaluate its performance,
such as: meaningful gestures; suitable sensors; efficient training algorithms; and accurate,
efficient, on-line/real-time recognition.

In general, the technology for capturing gestures is expensive; e.g., a vision system or a data-
glove is needed. For this reason some graphical devices, such as a mouse, light pen, joystick,
trackball, touch tablet, and thumb-wheel, can be employed to provide a simple input to a
gesture recognizer. Other possible devices are a foot controller, knee controller, eye tracker,
data nose, and tongue-activated joystick.

The gesture recognition problem consists of pattern representation and decision making.
Gestures are usually represented by various features, including templates, global transfor-
mations, zones, and geometric features. Templates are the simplest features to compute;
they are simply the input data in its raw form. Global transformations, such as rotation,
translation, or scaling can be employed to reduce the number of features in templates. Zon-
ing is a simple way of deriving features from a path. Space is divided into a number of zones,
and the path is transformed into the sequence of zones which the path traverses. Geometric
features of a path, such as its total length, total angle, number of times it crosses itself, etc.,
can be used to represent the global properties of the path.

Several methods have been used for gesture recognition: template-matching [2], dictionary
lookup [3], statistical matching [4], linguistic matching [5], neural network [6], and ad hoc
methods. Some of the methods are suitable for only one type of feature representation, while
others are more generally applicable. Template-matching systems are easy to train because
the prototypes in the systems are simply example templates. However, a large number of
prototypes can make the use of the template matching prohibitively expensive. When the
features are a sequence of tokens from a small alphabet, lookup techniques are efficient for
recognition. The drawback of dictionary lookup is that the system is not robust. Statistical
matching methods employ statistics of example feature vectors to derive classifiers. The
typical statistics used are average feature vector per class, per-class variance of the individual
features, and per-class correlations within features. Some statistical matching methods make
assumptions about the distributions of features within a class; the performance of such
systems tends to be poor when the assumptions are violated. Other statistical matching
methods do not have such assumptions, but they require much training data to estimate
the form of the distribution. The linguistic approach tries to apply automata and formal
language theory to the pattern recognition problem. The major problem with this approach
is the need of supplying a grammar for each pattern class. Neural networks have been
successfully applied to solve many pattern recognition problems. Their major advantage
is that they are built from a large number of simple elements which learn and are able to

collectively solve complicated and ambiguous problems. Unfortunately, they tend to require
a large amount of processing power, especially to train.

Several gesture interfaces have been developed. Coleman [7] built a hand-drawn symbol-
based text editor with a touch tablet as the input device. Buxton [8] created a musical score
editor with a small amount of gesture input by a mouse. Margaret Minsky [9] implemented a
system which uses gestures for selection, movement, and path specification to offer a complete
Logo programming environment. Rubine [4] produced a system based on statistical pattern
recognition techniques for recognizing signal-path gestures (draw with a mouse or stylus)
and multiple-path gestures (consisting of the simultaneous path of multiple fingers). The
Glove-talk system [6] employs a Data-Glove to control a speech synthesizer. Teaching-by-
showing, teleoperation [10], assembly-plan-from-observation {11] are techniques which use
gestures for programming a robot.

This report presents a method for developing a gesture interface using the multi-dimensional
hidden Markov model (HMM). HMM is a doubly stochastic model and is appropriate for
coping with the stochastic properties in gesture recognition. Instead of using geometric
features, gestures are converted into sequential symbols. HMMs are employed to represent
the gestures, and their parameters are learned from the training data. Based on the most
likely performance criterion, the gestures can be recognized by evaluating the trained HMMs.
We have developed a system to demonstrate the proposed method. We defined several digits
as gestures and used a mouse as the gesture input device. We then employed HMM to
learn and recognize these gestures. The feasibility of the method was demonstrated by the
experiments in both isolated and continuous gesture recognition. The proposed method has
potential applications in telerobotics and a variety of human machine interfacing problems.

2 Hidden Markov Model

A hidden Markov model is a collection of finite states connected by transitions. Each state
is characterized by two sets of probabilities: a transition probability, and either a discrete
output probability distribution or continuous output probability density function which,
given the state, defines the condition probability of emitting each output symbol from a
finite alphabet or a continuous random vector.

An HMM can be defined by:

o {S} - A set of states, including an initial state S; and a final state Sr

o A - The transition probability matrix, A = {a;;}, where a;; is the transition probability
of taking the transition from state ¢ to state j

e B - The output probability matrix, B = {b;(Ox)} for discrete HMM, B = {b;(x)} for
a continuous HMM, where O; stands for a discrete observation symbol, and x stands
for continuous observations of k-dimensional random vectors

In this report, we consider only a discrete HMM. For a discrete HMM, a;; and 5;(O;) have
the following properties:

Qs 2 0’ bJ(Ok) .>_ 0’ V'.»js k7 (1)
Zaij =1 V" (2)
)
500 =1, Vj. 3
k

If the initial state is of distribution x = {x;}, an HMM can be written in a compact notation
A= (A,B,7) (4)

to represent the complete parameter set of the model.

For a more detailed reference on theory, computation, and application of HMM, the readers
are referred to [13]. In order to simplify the learning process, we consider only the first order
HMM, which is based on the following assumptions: (1) Markov assumption: a new state
is entered based only on the current state; (2) Output-independent assumption: the output
probability distribution function depends only on the state at the particular time regardless
of when and how the state is entered.

HMM has been successfully applied to speech recognition [12, 13, 14]. Recently it has been
studied in force analysis and task context final segmentation {15, 16]. We have previously
proposed to use HMM for modeling and learning human skill [17]. In this report we propose
the HMM approach to gesture recognition. In general, the concept of HMM can be used
in solving three basic problems: the evaluation problem, the decoding problem, and the
learning problem. In the learning problem, we provide model parameters in such a way that
the model possesses a high probability of generating the observation for a given model and a
set of observations. Therefore, the learning process is to establish gesture models according
to the training data. In the evaluation problem we can score the match between a model
and an observation sequence, which could be used for isolated gesture recognition. In the
decoding problem we can find the best state sequence given an observation sequence, which
could be used for continuous gesture recognition.

3 HMM-based Gesture Recognition

The HMM approach to gesture recognition is motivated by the successful application of
hidden Markov modeling techniques to speech recognition problems. The similarities between
speech and gesture suggest that techniques effective for one problem may be effective for
the other as well. First, gestures, like spoken languages, vary according to location, time,
and social factors. Second, body movements, like speech sounds, carry certain meanings.
Third, regularities in gesture performances while speaking are similar to syntactic rules.
Therefore, linguistic methods may be used in gesture recognition. On the other hand, gesture
recognition has its own characteristics and problems. To develop a gesture interface, some

criteria are needed to evaluate its performance such as nieaningful gestures, suitable sensors,
efficient training algorithms, and accurate, efficient, on-line/real-time recognition.

Meaningful gestures may be very complex, containing simultaneous motions of a number of
points. However, these complex gestures should be easily specifiable. In general, gestures
can be specified either by example or by description. In the former, each application has a
training session in which examples of different gestures are collected for training the models.
The trained models are the representations of all gestures that the system must recognize.
In the latter method of specification, a description of each gesture is written in a gesture
description language, which is a formal language in which the syntax of each gesture is
specified. Obviously, the example method has more flexibility than the description method.
One potential drawback of specification by example is the difficulty in specifying the allowable
variation between gestures of a given class. This problem would be avoided if the model
parameters were determined by the most likely performance criterion. Because gesture is an
expressive motion, it is natural to describe such a motion through a sequential model. Based
on these considerations, HMM is appropriate for gesture recognition. A multi-dimensional
HMM is able to deal with multi-path gestures which are general cases of gesture recognition.
Furthermore, a single path gesture can usually be decomposed into 2D or 3D time series in
Cartesian space. That is, a single path gesture g(z,y, z,t) can be decomposed into X(t), Y (),
and Z(t). Moreover, a multi-dimensional HMM provides the possibility of using multiple
features to increase the recognition rate.

3.1 Approach

The key idea of HMM-based gesture recognition is to use multi-dimensional HMM represent-
ing the defined gestures. The parameters of the model are determined by the training data.
The trained models represent the most likely human performance and are used to evaluate
new incoming gestures. The HMM-based gesture recognition approach can be described as
follows:

1. Define meaningful gestures — To communicate with gestures, meaningful gestures must
first be specified. For example, a certain vocabulary must be specified for a sign
language, and certain editor symbols must be given in advance if the gestures are to
be used for editing text files.

2. Describe each gesture in terms of an HMM - A multi-dimensional HMM is employed
to model each gesture. A gesture is described by a set of N distinct hidden states and r
dimensional M distinct observable symbols. An HMM is characterized by a transition
matrix A and r discrete output distribution matrices B;, ¢ = 1,...,r. Note that only
the structures of A and B are determined in this step and the values of elements in A
and B will be estimated in the training process.

3. Collect training data — In the HMM-based approach, gestures are specified through
the training data. It is essential that the training data be represented in a concise
and invariant form. Raw input data are preprocessed before they are used to train

the HMMs. Because of the independence assumption, each dimensional signal can be
preprocessed separately. In the prototype system discussed later, the preprocessing
involves the short-time Fourier transform and vector quantization techniques.

4. Train the HMMs through training data - Training is one of the most important proce-
dures in a HMM-based approach. The model parameters are adjusted in such a way
that they can maximize the likelihood P(O|\) for the given training data. No analytic
solution to the problem has been found so far. However, the Baum-Welch algorithm
can be used to iteratively reestimate model parameters to achieve the local maximum.

5. Evaluate gestures with the trained model - The trained model can be used to classify
the incoming gestures. The Forward-Backward algorithm or the Viterbi algorithm can
be used to classify isolated gestures. The Viterbi algorithm can also be used to decode
continuous gestures.

3.2 Feature Extraction and Vector Quantization

One of the most important factors determining the performance of an HMM-based system
is the input representation. The input gestures are often represented by certain features.
Feature extraction and representation are independent of the gesture recognition system.
Several factors such as the existence of a preprocessing algorithm, its necessity, its complexity,
and its generality must be considered in determining the extent of preprocessing a gesture. In
general, there are two approaches to determining the input representation for a recognition
system. The first extensively preprocesses the input data to make “important” features
prominent and therefore easy for the recognizer to incorporate them in its processing. Most
speech recognition systems adopt this approach. In HMM-based speech recognition [18, 13],
the sampled speech is first passed through a filter to get rid of noise and is then blocked into
frames. Within each frame, the discrete speech samples are analyzed by a linear predictive
coding (LPC) technique. Finally, a set of the LPC coefficients represent the speech signal to
be recognized. Because the LPC technique can model the spectrum of the vocal tract as a
spectrum of an order-p all-pole model, the method works well in practice.

The second approach just gives the recognizer the “raw” input and allows it to learn from ex-
perience which features are important. The successful example of this approach is ALVINN
(Autonomous Land Vehicle In a Neural Network) [19]. Because of difficulties with prepro-
cessing images for mobile robot guidance, ALVINN adopts the philosophy of keeping the
system general by performing a minimal amount of preprocessing so that the recognizer
learns not only how to combine important features for the most appropriate response in the
current situation, but also how to detect the most important features in the input image.

The major features for gesture recognition are templates, global transformations, zones, and
geometric features. Among these features, templates are the simplest features to compute;
they are simply the input data in its raw form. For a path, a template is composed of the
coordinates of those points which make up the path. An advantage of templates is that tre
features are simple to compute. The major disadvantage is that the size of the feature data

increases with the size of the input, making the features unsuitable as input to certain kinds
of recognizers. Moreover, template features are not robust within a given class.

Global transformations, such as rotation, translation, or scaling, can be employed to reduce
the number of features in templates. The transformations are often chosen in such a way
that they are invariant under rotation, translation, or scaling of the input data. For example,
the Fourier transform can result in features invariant with respect to rotation of the input
pattern [20]. Global transformations generally produce a fixed number of features, which
provide greater flexibility in choosing the recognizer. The computation of the transformation
may be expensive, and the resulting features are usually difficult to interpret directly.

To extract features by zoning, the space of a path is divided into a number of zones, and the
path is transformed into the sequence of zones which the path traverses. It is also possible
to encode the direction from where each zone is entered. The major advantages of zoning
schemes are their simplicity and efficiency. The disadvantages of zoning methods are similar
to those for template features.

Geometric features of a path, such as its total length, total angle, number of times it crosses
itself, etc., can be used to represent the global properties of the path. Geometric features
are widely used in handwriting recognition [21] and are also used in gesture recognition [4].
Geometric features can carry a variety of useful information such as the total path length.
Also, geometric features can be applied to various recognizers which require a fixed number
of features, or to recognizers which expect a sequence of features. Geometric features tend
to be more complex to compute than the other types of features discussed above.

The short-time Fourier transformation (STFT) is chosen as the preprocessing tool in this
research for the following reasons. The Fourier transformation and its inverse establish a
one-to-one mapping between the time domain and the frequency domain, and fast Fourier
transform (FFT) algorithms can be implemented efficiently. Also, the Fourier transform
preserves information from the original signal, and ensures that important features are not
lost as a result of the FFT. Furthermore, shifting a waveform within the window changes
the real and imaginary parts of the frequency domain in such a manner that the square root
of the sum of the squares (the magnitude) remains constant. In fact, if a function is given
by z(t) and its Fourier transform is X(f), when z(t) is shifted by a constant time, T, i.e.,
z(t — T), its Fourier transform is
X(f)e-jmrﬂ"

i.e., time shifting affects phase only; the magnitude remains constant throughout.

Although the Fourier transform does not explicitly show the time localization of frequency
components, the time localization can be presented by suitably pre-windowing the signal in
the time domain. Accordingly, the short-time Fourier transform of a signal z(t) is defined
as [24]
STFT(t,f) = [=@y (t — et &)
t’
The STFT at time t is the Fourier transform of the signal z(#') multiplied by a shifted

analysis window v*(t' — t) centered around t. (All integrals are from —oo to co. The
superscript * denotes complex conjugation.) Because multiplication by the relatively short

window v*(t'—t) effectively suppresses the signal outside a neighborhood around the analysis
time point t = t’, the STFT is simply a local spectrum of the signal z(¢') around the analysis
window ¢.

Since gestures are motion paths, and each dimensional signal is assumed to be stochastically
independent, the preprocessing is actually performed on a one-dimensional signal. Although
human performance is a nonstationary stochastic process over a long interval, it can be
considered stationary over a short time interval. Thus, the STFT should give a good spectral
representation of the gesture during that time interval. The windows can be overlapped to
prevent loss of information. For each dimensional signal, a Hamming window of a certain
width is first used to block the signal into frames. The FFT analysis is then performed for
every window. Finally, a set of feature vectors is obtained from the amplitude of the FFT
coefficients. These feature vectors can be further processed as discussed below.

Because only a discrete HMM is considered, it is necessary to convert the feature vectors
into finite symbols. The independent quantization of each signal value or parameter can be
achieved by scalar quantization. In contrast, the joint quantization of a block of parameters
can be obtained through vector quantization (VQ). The representation of the VQ codeword
in the sample space can be the centroid of the corresponding cell as in conventional vector
quantization, or can be computed as the probability density function for the corresponding
cell. The latter involves computation of the maximum-likelihood estimates when the ob-
servation is incomplete. The VQ techniques have been well used to solve quantization or
data compression problems [25]. In an HMM-based approach, VQ can play an important
role in converting continuous signals into discrete symbols for discrete HMMs such as those
used in speech recognition [18, 13]. This section first reviews the principles of conventional
vector quantization and then introduces two standard algorithms used for hidden Markov
modeling.

A vector quantizer is completely decided by a codebook, which consists of a set of fixed pro-
totype vectors. VQ reduces data redundancy, and this inevitably causes distortion between
the original data and the quantized data. A key problem in the VQ technique is to minimize
that distortion. A description of the VQ process includes: (1) the distortion measure, and
(2) the generation of a certain number of prototype vectors. Two typical VQ techniques
which can minimize the distortion are discussed below.

Let x = (z1,22,...,24) € R? be a d-dimensional vector, where {zx, 1 < k < d } are real-
valued, continuous-amplitude random variables. In the VQ process, the vector x is mapped
onto another real-valued, discrete-amplitude d-dimensional vector z, that is,

z = ¢(x), (6)
where q(-) is the quantization operator. In general, z is one of the elements in a finite set of
values Z = {z;, 1 < i < L }, where 2z; = (zi1,2i2,...,2ia). The set Z is referred to as the

codebook, L is the size of the codebook, and {z;} is the set of codewords. The size L of the
codebook is also known as the number of levels in the codebook.

The quantizer design process is also known as the training process. In this process, the
d-dimensional space of the original random vector x is partitioned into L regions or cells

{Ci, 1 <i < L} and each cell C; is associated with a vector z;. The quantizer then assigns
the codeword z; if x is in C;, that is,

g(x) = 2, if x € C.. (M

Any input vector x that lies in the cell C; is quantized as z;. The shape of each cell can be
different, and the positions of the codewords corresponding to the cells are determined by
minimizing the average distortion associated with the corresponding cells.

To evaluate the quantization error between x and 2z, it is necessary to define a distortion
measure d(X, z) to measure the quantization quality. The distortion measure between x and
2 is also known as a distance measure. The measure must be tractable and computable in
order to be analyzed, and also must be subjectively relevant so that differences in distortion
values correlate with the quality of quantization. In general, the weighted mean square
error distortion can be used such that distortions contributed by quantizing the different
parameters are equal. Unequal weights can be introduced to allow certain components to
be more important than others. A popular choice for weights is to use the inverse of the
covariance matrix of z, i.e.,

d(x,z) = (x~2z)T7'(x - z), (8)

where ¥ is the covariance matrix of z. The above distortion measure can be simplified to a
squared error distortior, i.e.,

d—1
d0eR) = IRl = T o - a))
1=0
The squared error distortion is used in this dissertation for the VQ. The goal of designing
an L-level vector quantizer is to partition a d-dimensional space into L cells and associate
with each cell a quantized vector. Optimization methods are usually used to minimize
certain distortion measures. One criterion for optimizing the vector quantizer is to let the
overall average distortion be minimized over all L-levels of the quantizer. The overall average
distortion can be defined by

D(x, z) = E[d(x, Z)]
L
=) P(z)E[d(x,z)|x € Ci]

=1

L
=3 / o, 402 f(x, z)dx

i=1 Y%

L
= Z P(Zi) LGC.‘ d(x,zi)f(xlzi)dx

:':1

where E[:] is the expectation, P(2;) is the discrete probability of the codeword z;, f(x|z;) is
the multidimensional probability density function of x given z;, D; is the average distortion
in cell C;. The integral is taken over all components of the vector x.

No analytic solution is known to guarantee global minimization of the average distortion
measure for a given set of vectors. However, iterative algorithms, which can guarantee a
local minimum, are available and work well in practice.

The LBG algorithm proposed by Linde, Buzo, and Gray [26], will be used in this report.
The LBG algorithm iteratively splits the training vectors into 2, 4, ..., 2™ partitions and
determines the centroid for each partition. The centroid is refined iteratively by k-means
clustering. The LBG algorithm is described as follows:

The LBG Algorithm

1. Initialization: Set L (number of partitions or clusters) = 1. Find the centroid of all the
training data.

2. Splitting: Split L into 2L partitions. Set L = 2L.

3. Classification: Classify the set of training d-ta x; into one of the clusters C; according
to the nearest neighbor rule.

4. Codebook Updating: Update the codeword of every cluster by computing the centroid
in each cluster.

5. Termination 1: If the decrease in the overall distortion D at each iteration relative to
the value D for the previous iteration is below a selected threshold, proceed to Step 6;
otherwise go back to Step 3.

6. Termination 2: If L equals the VQ codebook size required, stop; otherwise go back to
Step 2.

Step 3 and Step 4 of the LBG algorithm are the same as for the k-means algorithm. Various
heuristic methods can be employed in the splitting step to find two vectors that are far apart
in each partition.

3.3 Recognition

One of the advantages of the HMM-based approach is that a variety of knowledge sources can
be combined into a single HMM. By representing all possible knowledge sources as HMMs,
the recognition task becomes a search in an enormous HMM. In the case that no knowledge
is added, a recognition model can be simply created by putting all gesture models in parallel,
and adding an initial state and a final state. The initial state of the recognition model has
a null transition to the initial state of each gesture model; the final state of each gesture
model has a null transition to the final state of the recognition model. A null transition is
a transition which has a transition probability but does not emit any output symbol, and
therefore does not consume any time. An example of a gesture recognition network is shown
in Figure 1. Figure 1(a) illustrates an HMM network for isolated gesture recognition without
adding knowledge. By adding a null transition from the final state of the recognition model

Figure 1: HMM networks for gesture recognition without adding knowledge source.

back to the initial state of the recognition model, a continuous gesture recognition network
can be obtained as illustrated in Figure 1(b). The network is more complicated if knowledge
sources are encoded into the HMM network.

The goal in a recognition process is to retrieve the input gestures which are represented by a
sequence Q. The process is to find the HMM with the highest probability given a sequence,
ie.,

g" = arg max P(A|0). (11)

The Forward-Backward algorithm is able to evaluate the probability of the observation se-
quence generated by an HMM, i.e., P(O|)). However, the problem of recognition is to
compute P(A|O). From the Bayes formula, a posteriori probability given the sequence can

be written as
P(O|IN)P(X)

P(MO) = =5 0)

(12)

10

Because P(0O) is a constant for a given input, only P(O}A\)P()) needs to be computed.
P(X) is the probability of the gesture being used, i.e., it characterizes the likely sequence of
gestures in certain rules. For example, if the gestures are used for sign language, P()) can
then be determined through a language model. In the simplest case, all the gestures are
equally likely to be used, only the term P(OJ)) is a variable.

3.4 Isolated vs. Continuous Gesture Recognition

The advantage of hidden Markov modeling is that it can automatically absorb a range of
model boundary information for continuous gesture recognition. Other methods, such as
neural networks, face problems in training for continuous gesture recognition, because the
gesture boundaries are not automatically detectable. Therefore, tedious hand-marking is
usually required.

Training HMMs for continuous gesture recognition is similar to that for isolated gesture
recognition. To train the parameters of the HMM, the HMMs are concatenated, and each
HMM is instantiated with a corresponding gesture. This large concatenated HMM can then
be trained by the corresponding data. Because the entire gesture HMM is trained on the
entire observation sequence for the corresponding gestures, all possible gesture boundaries
are inherently considered. In other words, the parameters of each model will be reestimated
based on those states which are suitable for gesture alignment, regardless of the location
of the gesture boundaries. Such a training method provides complete freedom to align
the concatenated model against the observation, and no effort is required to find gesture
boundaries.

The recognition of a continuous gesture is much more difficult than that of an isolated gesture.
Because the gesture boundaries cannot be accurately detected, all possible beginning and end
points must be considered. This results in a tree search. For a large-vocabulary, continuous
gesture recognition task, an optimal full search is infeasible. Several sub-optimal search
algorithms can be used instead. The Viterbi algorithm [13] is an efficient sub-optimal search
algorithm that can be used for continuous gesture recognition.

4 Computational Consideration

This section discusses several computational considerations in implementing an HMM-based
system. These issues are essential for developing a high quality HMM-based system, although
some of them are not necessarily required by HMM theory itself.

4.1 Scaling

Scaling is one of the most crucial issues in implementation. Recall that the forward and
backward variables, a(¢) and B(¢), consist of the sum of a large number of terms which are

11

multiplications of the elements of {a;;} and {b;}. Since each q;; and b; is less than 1, a(i) and
B(¢) will approach zero in an exponential fashion when the observation length T increases.
For the multi-dimensional HMM, there are more multiplications of the output probabilities
given the observation length. As a result, it is necessary to use re-scaling techniques. The
most straightforward method is to multiply a(z) and B(i) by a scaling factor so that they
remain within the dynamic range of the computer for 1 < ¢ < T. Since the same scalings
can be done for a(i) and B(i), the scaling factor will be canceled out at the end of the
computation.

A scaling coefficient, ¢;, can be chosen in such a way that that(i) =1forl1<t<T,i.e,
i

o = [Sali)]”. (13)

The same scaling coefficient c; can also be applied to §,(z) for ISt < T and 1I<:< N. In
the computation, the forward and backward variables are scaled by c; at each stage of time
t. Because a(-) and fB(-) are computed recursively in an exponential fashion, the individual
scaling factors are multiplied together in the forward and backward recursion. Thus, at time
t, ay(-) is scaled by

C: = [Je. (14)
i=1
and §(-) is scaled by
T
Dt = HC". (15)

i=t

Note that

> ar(i) = Cr) or(i) (16)

1E€ESE 1ESF

= CrP(O|)), (17)

where o;(-) is scaled a4(-). Then, the scaled intermediate probability, v{(¢,7) can be written
as

Cra4(4)ai;0;(0t41)Bea1(§ + 1) Der
CT Z aT(i)

1ESEp
= 7(iJ5), (19)

where ~;(-) denotes the scaled 4:(-). This implies that the intermediate probabilities can be
used in the same way as unscaled probabilities. Therefore, the reestimation formulas can be
kept exactly the same as discussed in Chapter II except that P(O|)) should be computed as

2 (i)
P(O|)) = f-iFCT— (20)

73, 5) (18)

12

In practice, it is not necessary for the scaling operation to be performed at every observation
time. It can be applied at any scaling interval where underflow is likely to occur. In the
unscaled interval, ¢; can be set to unity. An alternative way to avoid underflow is to use a
logarithmic representation for all the probabilities, which is discussed below.

4.2 Logarithmic computation

A logarithmic representation offers two advantages in the HMM computation. First, it pro-
vides an alternative way to avoid underflow. Underflow cannot happen if all the probabilities
are represented in a logarithmic representation. Second, it improves efficiency of the svstem
because integers can be used to represent the logarithmic values, thereby changing * g
point to fixed point operations.

When probability P is represented by log, P, higher precision can be obtained by setting
b closer to unity. In the logarithmic representation, multiplication of two numbers implies
addition of their logarithms. The addition of two numbers is, however, more complicated.
It can, however, be simplified under certain conditions. If P, > P,, the addition of P, and
P, can be written as

log,(P, + P;) = log,(bosP + plomFz) (21)
= log, P, + logy(1 + b8Pz ~ loas 1), (22)

Since logarithms are represented as integers, if log,(1+ '8 F2—106: £1) i5 less than 0.5, the sum
is equal to log, P,. That is, if the magnitude of P, is many orders smaller than that of P,
adding P, and P; will just result in P;. An alternative way is to make use of a table. If all
possible values of log, P, —log, P, are computed in advance, the quantity log, (1 + b'ossF2-lossP1)
can be stored as a table, T'(n), where

T(n) = { log,(1 +b*) if T(n) > 0.5 (23)

0 otherwise.

The value of b is crucial in making such a table. To guarantee computational accuracy, the
size of T(n) can be determined by decreasing n from 0 until log,(1 + b") approaches zero.
Therefore, the range of values for n depends upon the value of b. For example, varying b from
1.0001 to 1.00001, the size of T'(n) increases from 99,041 to 1,220,614 when 32-bit integers
are used for the logarithms.

Using the table T'(n), the addition of two probabilities can be implemented as one integer
addition, one subtraction, two comparisons, and one table lookup, i.e.,

log, P; + T(log, P; — log, P,) if P, > P,

logy P; + T(log, P, — log, P2) otherwise. (24)

logy (P + P2) = {

The errors introduced by the table are of the same order as when the scaling procedure is
used in the floating point representation [27, 18].

13

4.3 Thresholding

The efficiency of computation in the Baum-Welch reestimation formulas can be improved by
thresholding the forward and backward variables. In the parameter reestimation procedure,
the final reestimations depend on the summation of 4’s. If a certain v is very small relative
to other v’s, it makes little contribution to the final reestimations. The forward variable
a.(1) and the backward variable §;(t) are major factors in 4. Therefore, if a certain a() or
B() become very small relative to other a’s or 8’s during the computation, they can be set to
zero without significantly affecting the performance. A method to establish such a threshold
is introduced below [13].

Define @; as the maximum a(z) at time ¢ with respect to different states 1,
a; = m?.xag(z). (25)

Given a threshold ¢, in each state ¢ if (1) < can, set ay(z) equal to zero before moving on
to compute a at time ¢ + 1. Because at time ¢ + 1, only those a from time ¢ which are
greater than zero will be included, this thresholding is very useful in reducing computation
to a manageable size. The backward variable can be thresholded in the same way. Moreover,
if a4(2) is zero, B(z) can also be set to zero.

The selection of the threshold c is crucial in this method. If ¢ is too small, more than the
necessary computation is performed. If ¢ is too large, the forward-backward algorithm will
deteriorate to the Viterbi training, i.e., only the best path is used for the estimation of model
parameters. There is no analytic solution for ¢ and the appropriate value of ¢ can only be
determined empirically.

4.4 Multiple Independent Sequences

The parameter estimation algorithms described in Chapter II are for only one training da-
tum, but are easily generalized in our application where multiple training sequences are
needed. Note that the Baum-Welch algorithm does nothing more than compute the frequen-
cies of occurrence of various events. The modification for multiple independent sequences
requires computing the frequencies of occurrence in each sequence separately and adding
them together [13].

4.5 Initialization

Theoretically, the Baum-Welch algorithm gives only a local maximum of the likelihood func-
tion. If a poor initialization point is given, a poor local maximum may be reached. Particu-
larly, if a probability is initialized zero, it will remain zero with every iteration. In practice,
finding the unique global maximum seldom matters. What does matter is finding a set
of parameters that recognizes the gestures with high accuracy. Fortunately, our experience

14

Gesture Input | 5| Preprocessing |_,| HMM Output
Module Module Module Module
Mouse Mode! Bank

Figure 2: Block diagram of the gesture based system.

shows that, for a discrete HMM, uniformly distributed initial points work well. A similar ob-
servation is also given by other researchers {13]. Another advantage of using discrete HMMs
is that the output distributions are automatically learned by the training process. For the
continuous or semi-continuous HMM, however, good initial values are essential for obtaining
a good model.

5 Experimental Results

In order to demonstrate the proposed method, a prototype system has been developed (Fig-
ure 2). The system was designed for handdrawn gesture recognition. The gesture trace is
produced using a mouse and the system is interfaced with a X window. The input gestures are
resampled and then converted into symbols. Each gesture is described by a two-dimensional
HMM. The parameters of the HMMs are learned from the training data.

The system was run successfully for some case studies. Nine gestures were defined (Figure 3),
and a six-state, two-dimensional Bakis model was employed to model each gesture. For n = 6,
the form of the transition matrix A, the initial state probabilities, and the state transition
coefficients of state 6 were obtained from [17] Two 256 x 6 observability matrices were used,
with each column representing the observation probability distribution for one state. The
learning algorithms can be obtained from [17].

15

[2 2 4 &5
&7 89

Figure 3: The defined gestures.
5.1 Gesture Input

A mouse is a two-dimensional single-path gesture input device. Each gesture can be repre-
sented as an array g of P time-sampled data points:

9 = (xp,yp,tp) 0Sp< P.

The sampling time information t, is needed because the X-window interface does not de-
liver input points at regular intervals. The two-dimensional single-path gesture g, can be
projected onto the z and y axes, and two independent one-dimensional signals, z(¢,) and
y(t,), are obtained. The z(t,) and y(t;) are then re-sampled by linear interpolation to ob-
tain input points with the same sampling interval. Interpolation is the same operation as
“table lookup.” Described in “table lookup” terms, the “table” is [T, X]. Linear interpola-
tion “looks-up” the elements of ¢; in T, and, based upon their location, returns values z;
interpolated within the elements of X.

5.2 Preprocessing

The experiments were run on a SUN4 machine. The gestures were generated with a mouse
at about 40 millisecond sampling time intervals and then were resampled at 20 millisecond
sampling time intervals. The FFT and VQ techniques were used for pre-processing the
gestures. The Hamming window was first used with a width of 320 ms in every 160 ms.
FFT analysis was then performed for every window. Finally, a set of 16-dimensional vectors
was obtained from the amplitude of the FFT coefficients. The LBG algorithm was used
to produce the VQ codebooks. First, a certain number of the training vectors was used to
generate a 256-vector codebook for each dimensional signal. These sets of 256 vectors were
the symbols in the output probability distribution function in our discrete HMM. An input

16

0 L3 1 ¥ 1] T L
ol ———— ‘
>
400+ .
500 1 X '] . g) - L 3
0 100 200 300 400 300 600
X
600 L | L L] | S 1 L) £ §
A400 W\]
<
200t b
o | L k. L1 1 i b S
0 2 4 6 8 10 12 14 16
t
400 T 1] LY L 1 T 1
__300} 7
=
200t h
100O 2 4 6 8 10 12 14 16

t
Figure 4: An example of gesture signals.

vector corresponded to the set of 16 32-bit floating point FFT coefficient amplitudes, and
was mapped onto an 8-bit index which represents one of the 256 prototype vectors. Figure
(4) shows an input gesture can be decomposed into two one-dimensional signals, and Figure
(5) illustrates an example of preprocessing for a one-dimensional signal.

5.3 Training

To initialize the model parameters, output probabilities were set equal to ﬁ, where 256
is the VQ level. The transition probabilities were initialized with uniformly distributed
random number. With these initial parameters, the Forward-Backward algorithm was run
recursively on the training data. The Baum-Welch algorithm was used iteratively to reesti-
mate the parameters based on the forward and backward variables. After each iteration, the
output probability distributions were smoothed using a floor between 0.0001 and 0.00001,
and renormalized to meet stochastic constraints.

17

A x(®

\//\/_\/\

e IR 1y
FFT
Vector y y § y YYY Y
Vector Quantization
Symbow;;* *+* ‘
§,5,8; §4 Sn.i Sp

Figure 5: An example of preprocessing for one-dimensional signal.

18

100

99+

981

961

95

94r

93r

Recognition Accuracy Percentage (50 test data/gesture)

o1f

0 10 20 30 40 50 60 70 80 80 160
Training Sample Number (per gesture)

90 L L

] 1

Figure 6: Recognition rate vs. training set size.
5.4 Results

First, isolated gesture recognition was investigated. One hundred fifty samples of data were
collected for each gesture, the first 100 for training and the rest of the samples for testing.
For a total of 450 testing samples, the system successfully recognized 449 samples, a 99.78%
accuracy rate. The effect of the training set size was studied by varying the number of
training samples per gesture. Figure 6 shows the result of the recognition rate versus training
set size. The testing set size was fixed at 50 per gesture (total 450) while the training set size
changed from 10 to 100 samples. As expected, the recognition rate increased as the training
set size increased. When the training set size was 10 samples per gesture, the recognition
rate was 91.56%, and when the training set size increased to 100 samples per gesture, the
rate was 99.78%.

The performance of the HMM-based system for continuous gesture recognition was then
studied. The focus was on the capability of the system to separate connected gestures.
Continuous gestures may be either connected or separated from each other, as shown in
Figure 7. The gesture models of “2” and “8” were trained together with both connected
and separated “82”s. Then the trained models were tested by inputing gesture “2”, “8”, a
connected “82”, and a separated “82”. In all cases, the system demonstrated the capability
to recognize the gestures correctly.

From the experimental results, some remarks are in order:

19

)

o _
S :
/""l 4
< (__

(a) ®)

Figure 7: An example of continuous gesture: (a) connected and (b) separated.

. We have demonstrated that HMM is a feasible parametric model for building a gesture-

based system. Although we have examined only a two-dimensional single-path gesture
case in this report, the method can be extended to multiple-path applications. For
example, Data-Glove is a typical multiple-path gesture input device that allows us to
encode the gestures in the joint space and represent the gestures by multi-dimensional
HMM. The same method is applicable to develop a variety of gesture recognition
systems that can be useful in telerobotics and human machine interfacing.

HMM is a doubly stochastic model and is appropriate for coping with the stochastic
properties in gesture recognition. HMM can represent all the training data in the
statistic sense by its parameters and its parameters can be optimized by efficient algo-
rithms for the accurate estimation. Therefore, the model can be updated incrementally,
which is desirable for learning. Comparing with neural network approach, HMM con-
verges faster because of its efficient reestimation algorithms, and is more suitable for
continuous gesture recognition because no hand-marking is needed.

. The gesture recognition of a two-dimensional single-path has much in common with

on-line handwriting recognition. However, our method can potentially deal with the
gestures which dimensions are other than two, are drawn from unusual symbols, specify
entire commands, vary in size and orientation, and have a dynamic components.

Handwriting recognition systems can be broadly grouped into two classes: on-line
and off-line. In on-line handwriting recognition, characters are recognized as they are
drawn. In off-line handwriting recognition, characters are first drawn on paper, and
then optically scanned and represented as two-dimensional rasters. Although gesture
recognition is different from handwriting recognition in general, it is possible to apply
the proposed method to handwriting recognition after modification. For example,
the method is able to do on-line handwriting recognition by taking the FFT base on

20

arc length instead of time t. The same idea can be applied to off-line handwriting
recognition after some preprocessing.

6 Conclusion

We have proposed a method for modeling, recognizing, and learning human gestures using the
hidden Markov model. HMM is a powerful parametric model and is feasible to characterize
two stochastic processes — the measurable action process and immeasurable, hidden mental
states. Instead of using geometric features, we convert the gestures into sequential symbols.
HMMs are employed to represent the gestures, and their parameters are learned from the
training data. Based on the most likely performance criterion, the gestures can be recognized
by evaluating the trained HMMs.

We developed a prototype to demonstrate the feasibility of the HMM-Lased gesture recog-
nition method. We defined several digits as gestures and used a mouse as the gesture input
device. We then applied HMM to learn and to recognize measured gestures. The experi-
mental results showed that the proposed method can be used for learning and recognizing
gestures in both isolated cases and continuous cases. The proposed method is applicable
to multi-dimensional signal recognition and learning problems, and will be of significance in
developing gesture interface in telerobotics and human-computer interfacing.

Acknowledgement

The authors would like to thank Dr. X.D. Huang, Dr. T. Kanade, and Dr. C.S. Chen for
their valuable suggestions and discussions.

References

[1] T.H. Speeter, “ Transformation human hand motion for telemanipulation,” Presence,
Vol. 1, No.1, pp.63-79, 1992.

{2] J. S. Lipscomb, “A trainable gesture recognizer,” Pattern Recognition, vol. 24, No. 9,
pp895-907, 1991.

[3] W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics,
McGraw-Hill, 1979.

[4] D. H. Rubine, “The automatic recognition of gesture,” Ph.D dissertation, Computer
Science Department, Carnegie Mellon University, December, 1991.

[5] K. S. Fu, “Syntactic recognition in character recognition,” Volume 112 of Mathematics
in Science and Engineering, Academic Press, 1974.

21

[6] S. S. Fels and G. E. Hinton, “Glove-talk: a neural network interface between a data-
glove and a speech synthesizer,” IEEE Trans. Neural Networks, Vol. 4, No. 1, pp.2-8,
1993.

[7] Michael L. Coleman, “Text editing on a graphic display device using hand-drawn proof-
reader’s symbols,” Proceedings of the Second University of Illinois Conference on Com-
puter Graphics, University of Illinois Press, pp. 283-290, 1969.

[8] W.A.S. Buxton, R. Sniderman, W. Reeves, S. Patel, and R. Baecker, “The evolution of
the SSSP score-editing tools,” Foundation of Computer Music, Chapter 24, pp.443-466,
MIT press, 1985.

[9] M.R. Minsky, “Manipulating simulated objects with real-world gestures using a force
and position screen,” Computer Graphics, Vol. 18, No. 3, pp. 195-203, 1984.

[10] S. Hirai and T. Sato, “Motion understanding for world model management of telerobot,”
Proceedings of IROS’89, pp. 124-131, 1989.

[11] K. Ikeuchi and T. Seuhiro, “Towards man assembly plan from observation: task recog-
nition with polyhedral objects,” CMU Tech. Rep. CMU-CS-91-167, Computer Science
Department, Carnegie Mellon University, 1991.

[12] K.F. Lee, H.W. Hon and R. Reddy, “An overview of the SPHINX speech recognition
system,” IEEL Trans. on ASSP, Vol. 38, No. 1, pp. 35-45, 1990.

[13] X.D. Huang, Y. Ariki and M. A. Jack, “Hidden Markov Models for Speech Recognition,”
Edinburgh University Press, 1990.

[14] X.D. Huang, “Phoneme classification using semicontinuous hidden Markov models,”
IEEE Trans. on ASSP, Vol. 40, No. 5, pp. 1062-1067, 1992.

[15] B. Hannaford, P. Lee, “Hidden Markov model analysis of force/torque information
in telemanipulation,” The International Journal of Robotics Research, Vol. 10, No. 5,
pp-528-539, 1991.

[16] P. K. Pook and D. Ballard, “Recognizing teleoperated manipulations,” Proceedings of
1993 IEEFE Inter. Conf. on Robotics and Automction, Atlanta, Georgia, USA, Vol. 2,
pp-578-585, 1993.

[17] J. Yang, Y. Xu and C. S. Chen, “Hidden Markov model approach to skill learning and
its application in telerobotics,” Proceedings of 1993 IEEE Inter. Conf. on Robotics and
Automation, Vol. 1, pp.396-402, 1993.

[18] K.F. Lee, “Large-vocabulary speaker-independent continuous speech recognition: The
SPHINX system,” Ph.D. thesis, Department of Computer Science, Carnegie Mellon
University, 1988.

[19]) D.A. Pomerleau, “Neural Network Perception for Mobile Robot Guidance,” Ph.D. dis-
sertation, Department of Computer Science, Carnegie Mellon University, 1992.

22

[20] G.H. Granlund, “Fourier preprocessing for hand print character recognition,” IEEE
Trans. on Computers, Vol. 21, pp. 195-201, 1972.

[21] C.Y. Suen, M. Berthod, and S. Mori, “Automatic recognition of handprinted characters:
the state of the art,” Proceedings of the IEEE, Vol. 68, No. 4, pp. 469-487, 1980.

[22] L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “ A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chins,” Ann. Math. Stat.,
Vol. 41, No. 1, pp. 164-171, 1970.

[23] R.W. Schafer and L.R. Rabiner, “Digital representations of speech signals,” Proceedings
of IEEE, Vol. 63, No. 4, pp. 662-677.

[24] F. Hlawatsch and G.F. Boudreaux-bartels, “Linear and quadratic time-frequency signal
representations,” IEEE SP Magazine, Vol.9, No.2, 1992.

[25] R.M. Gray, “Vector quantization,” IEEE ASSP Magazine, Vol. 1, No.2, pp. 4-29, 1984.

[26] Y. Linde, A. Buzo, and R.M. Gray, “ An algorithm for vector quantizer design,” IEEE
Trans. on Communication, Vol. COM-28, pp.84-95, 1980.

[27] Peter F. Brown, “The Acoustic-Modeling Problem in Automatic Speech Recognition,”
Ph.D. thesis, Department of Computer Science, Carnegie Mellon University, 1987.

23

